Publications

Geiß, C, Salas, E, Guevara-Coto, J, Régnier-Vigouroux, A, Mora-Rodríguez, RA (2022) Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells 2022, 11, 404. https://doi.org/10.3390/cells11030404

Acón M, Geiß C, Torres-Calvo J, Bravo-Estupiñan D, Oviedo G, Arias-Arias JL, Rojas-Matey LA, Edwin B, Vásquez-Vargas G, Oses-Vargas Y, Guevara-Coto J, Segura-Castillo A, Siles-Canales F, Quirós-Barrantes S, Régnier-Vigouroux A, Mendes P, Mora-Rodríguez R (2021) MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer. iScience. 24,103407. doi: 10.1016/j.isci.2021.103407.

GEIß, C., et al. (2021) Metabolic and inflammatory reprogramming of macrophages by ONC201 translates in a pro-inflammatory environment even in presence of glioblastoma cells. Eur. J. Immunol. DOI: 10.1002/eji.202048957

GEIß, C., et al. (2019) Assessing the reliability of gene expression measurements in very-low-numbers of human monocyte-derived macrophages. Sci. Rep. 9, 17908. doi.org/10.1038/s41598-019-54500-8 1

CARDOSO, A.M.S., et al. (2019) MiR-144 overexpression as a promising therapeutic strategy to overcome glioblastoma cell invasiveness and resistance to chemotherapy. Human Molecular Genetics. doi.org/10.1093/hmg/ddz099

DUHAMEL M, et al. (2018) Paclitaxel treatment and PC1/3 knockdown in macrophages is a promising anti-glioma strategy as revealed by proteomics and cytotoxicity studies. Mol Cell Proteomics.PMID: 29531019

OANCEA-CASTILLO, L.D.R., et al. (2017) Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines. Cancer Biology & Therapy, 18:6, 400-406. https://doi.org/10.1080/15384047.2017.1323583

CISNEROS CASTILLO, L.D.R., et al. (2016) A Novel Computer-Assisted Approach to evaluate Multicellular Tumor Spheroid Invasion Assay. Sci. Rep., 6, 35099. doi: 10.1038/srep35099

CISNEROS CASTILLO, L.D.R., et al. (2016) Evaluation of Consistency in Spheroid Invasion Assays. Sci. Rep., 6, 28375; doi: 10.1038/srep28375

CHOI, J., et al.  (2015) Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biology & Therapy, 16:1205-1213. 10.1080/15384047.2015.1056406

NOACK, J., et al. (2014) A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy. Cell Death and Disease, 5, e1425;PMID25255218

DOKIC, I., et al. (2014) High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instability Int J Radiat Biol, Sep 8:1-9 [Epub ahead of print] PMID24991884

TOMA, A. et al. (2013) A validated mathematical model of tumour-immune interactions for glioblastoma. Current Medical Imaging Reviews, 9, 145-153

KEES, T., et al. (2012) Microglia isolated from glioma patients gain anti-tumor activities upon poly (I:C) stimulation. Neuro-Oncology, 14, 64-78. Epub 2011 Oct 20 PMID22015597

DOKIC, I., et al. (2012) Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia, 60, 1785-1800. Epub 2012 Aug 1 PMID2951908

MORA, R., et al. (2010) Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia, 58, 1364-1383 PMID2060786

MORA, R. and RÉGNIER-VIGOUROUX, A. (2009) Autophagy-driven cell fate decision maker. Activated microglia induce specific death of glioma cells by a blockade of basal autophagic flux and secondary apoptosis/necrosis. Autophagy, 5, 1-3 PMID9197144

MORA, R., et al. (2009) TNF-α- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia, 57, 561-581 PMID18942750

NICKLES, D. et al. (2008) End-stage dying glioma cells are engulfed by mouse microglia with a strain-dependent efficacy. J. Neuroimmunol., 197,10–20 PMID18495256

ABSCHUETZ, A. et al. (2006) The oncolytic murine autonomous parvovirus, a candidate vector for glioma gene therapy, is innocuous to normal and immunocompetent mouse glial cells. Cell Tissue Res, 325, 423-436 PMID16699801

REGNIER-VIGOUROUX, A. (2003) The mannose receptor in the brain. International Review of Cytology, 226, 321-342 PMID12921240

ZIMMER, H. et al. (2003) Functional characterization of mannose receptor expressed by immunocompetent mouse microglia. Glia, 42, 89-100 PMID12594740

BURUDI, E.M.E., and REGNIER-VIGOUROUX, A. (2001) Regional and cellular expression of mannose receptor in the post-natal developing mouse brain. Cell Tissue Res, 303, 307-317 PMID11320646

GRESSER, O. et al. (2001) Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active Cathepsin L and Cathepsin S. Eur. J. Immunol., 31, 1813-1824 PMID11433378

BUSSHOFF, U. et al. (2001) CD1 expression is differentially regulated by microglia, macrophages and T cells in the CNS upon inflammation and demyelination. J. Neuroimmunol., 113, 220-230 PMID11164905

GRESSER, O. et al. (2000) Tumor necrosis alpha and interleukin-1 alpha inhibit through different pathways interferon-gamma-induced antigen presentation, processing and MHC class II surface expression on astrocytes, but not on microglia. Cell Tissue Res, 300, 373-382 PMID10928267

BURUDI, E.M.E. et al. (1999) Identification and functional characterization of the mannose receptor in astrocytes. Glia, 25, 44-55 PMID9888297